

Welcome to django-transitions’s documentation!

Contents:

	Overview

	Quickstart
	States and Transitions

	Statemachine Mixin

	Model

	Admin

	Mixins and Base Classes
	Transition Base Classes

	Django Admin Mixins

	Templates

	Frequently asked questions
	What are the advantages of django-transitions over other django workflow applications?

	Are there other packages that provide this functionality?

	What is the history of django and pytransitions integration?

	Changelog
	0.2 (2019/01/17)

	0.1 (2018/11/13)

	Contributors

Indices and tables

	Index

	Module Index

	Search Page

Overview

A wrapper of pytransitions [https://pypi.org/project/transitions/] for django [https://www.djangoproject.com/]

[image: Test Status]
 [https://circleci.com/gh/PrimarySite/django-transitions][image: Test Coverage]
 [https://codecov.io/gh/PrimarySite/django-transitions][image: Documentation Status]
 [https://django-transitions.readthedocs.io/en/latest/?badge=latest]You do not need django-transitions to integrate django [https://www.djangoproject.com/] and pytransitions [https://pypi.org/project/transitions/].
It is meant to be a lightweight wrapper (it has just over 50 logical lines of code)
and documentation how to go about using pytransitions inside a django application.

This package provides:

	Example workflow implementation.

	
	Base classes and mixins to

	
	Keep it DRY

	Keep transitions consistent

	Reduce cut and paste

	Avoid boiler plate.

	Admin mixin to add workflow actions to the django admin.

	Admin templates

Quickstart

Lets implement the following state machine.

	The object starts of as ‘under development’ which can then be made ‘live’.

	From the ‘live’ state it can be marked as ‘under maintenance’.

	From all states the object can be marked as ‘deleted’.

	A ‘deleted’ object can be recovered into the ‘under maintenance’ state.

	Whenever a transition occurs the datetime will be recorded in a datefield.

[image: _images/lifcycle_state_diagram.svg]Import the dependencies:

from django_transitions.workflow import StateMachineMixinBase
from django_transitions.workflow import StatusBase
from transitions import Machine

States and Transitions

We start by defining the states and transitions

class LiveStatus(StatusBase):
 """Workflow for Lifecycle."""

 # Define the states as constants
 DEVELOP = 'develop'
 LIVE = 'live'
 MAINTENANCE = 'maintenance'
 DELETED = 'deleted'

 # Give the states a human readable label
 STATE_CHOICES = (
 (DEVELOP, 'Under Development'),
 (LIVE, 'Live'),
 (MAINTENANCE, 'Under Maintenance'),
 (DELETED, 'Deleted'),
)

 # Define the transitions as constants
 PUBLISH = 'publish'
 MAKE_PRIVATE = 'make_private'
 MARK_DELETED = 'mark_deleted'
 REVERT_DELETED = 'revert_delete'

 # Give the transitions a human readable label and css class
 # which will be used in the django admin
 TRANSITION_LABELS = {
 PUBLISH : {'label': 'Make live', 'cssclass': 'default'},
 MAKE_PRIVATE: {'label': 'Under maintenance'},
 MARK_DELETED: {'label': 'Mark as deleted', 'cssclass': 'deletelink'},
 REVERT_DELETED: {'label': 'Revert Delete', 'cssclass': 'default'},
 }

 # Construct the values to pass to the state machine constructor

 # The states of the machine
 SM_STATES = [
 DEVELOP, LIVE, MAINTENANCE, DELETED,
]

 # The machines initial state
 SM_INITIAL_STATE = DEVELOP

 # The transititions as a list of dictionaries
 SM_TRANSITIONS = [
 # trigger, source, destination
 {
 'trigger': PUBLISH,
 'source': [DEVELOP, MAINTENANCE],
 'dest': LIVE,
 },
 {
 'trigger': MAKE_PRIVATE,
 'source': LIVE,
 'dest': MAINTENANCE,
 },
 {
 'trigger': MARK_DELETED,
 'source': [
 DEVELOP, LIVE, MAINTENANCE,
],
 'dest': DELETED,
 },
 {
 'trigger': REVERT_DELETED,
 'source': DELETED,
 'dest': MAINTENANCE,
 },
]

Statemachine Mixin

Next we create a mixin to create a state machine for the django model.

Note

The mixin or the model must provide a state property.
In this implementation state is mapped to the
django model field wf_state

The mixin must override the machine of the StateMachineMixinBase class.
The minimum boilerplate to achieve this is:

machine = Machine(
 model=None,
 **status_class.get_kwargs()
)

In the example we also define a wf_finalize method that will set the
date when the last transition occurred on every transaction.

class LifecycleStateMachineMixin(StateMachineMixinBase):
 """Lifecycle workflow state machine."""

 status_class = LiveStatus

 machine = Machine(
 model=None,
 finalize_event='wf_finalize',
 auto_transitions=False,
 **status_class.get_kwargs() # noqa: C815
)

 @property
 def state(self):
 """Get the items workflowstate or the initial state if none is set."""
 if self.wf_state:
 return self.wf_state
 return self.machine.initial

 @state.setter
 def state(self, value):
 """Set the items workflow state."""
 self.wf_state = value
 return self.wf_state

 def wf_finalize(self, *args, **kwargs):
 """Run this on all transitions."""
 self.wf_date = timezone.now()

Model

Set up the django model

class Lifecycle(LifecycleStateMachineMixin, models.Model):
 """
 A model that provides workflow state and workflow date fields.

 This is a minimal example implementation.
 """

 class Meta: # noqa: D106
 abstract = False

 wf_state = models.CharField(
 verbose_name = 'Workflow Status',
 null=False,
 blank=False,
 default=LiveStatus.SM_INITIAL_STATE,
 choices=LiveStatus.STATE_CHOICES,
 max_length=32,
 help_text='Workflow state',
)

 wf_date = models.DateTimeField(
 verbose_name = 'Workflow Date',
 null=False,
 blank=False,
 default=timezone.now,
 help_text='Indicates when this workflowstate was entered.',
)

We can now inspect the behaviour of the model model with
python manage.py shell

>>> from testapp.models import Lifecycle
>>> lcycle = Lifecycle()
>>> lcycle.state
'develop'
>>> lcycle.publish()
True
>>> lcycle.state
'live'
>>> lcycle.publish()
Traceback (most recent call last):
 File "<console>", line 1, in <module>
 File "/home/christian/devel/django-transitions/.venv/lib/python3.5/site-packages/transitions/core.py", line 383, in trigger
 return self.machine._process(func)
 File "/home/christian/devel/django-transitions/.venv/lib/python3.5/site-packages/transitions/core.py", line 1047, in _process
 return trigger()
 File "/home/christian/devel/django-transitions/.venv/lib/python3.5/site-packages/transitions/core.py", line 397, in _trigger
 raise MachineError(msg)
transitions.core.MachineError: "Can't trigger event publish from state live!"
>>> lcycle.save()
>>> graph = lcycle.get_wf_graph()
>>> graph.draw('lifcycle_state_diagram.svg', prog='dot') # This produces the above diagram

Admin

Set up the django admin to include the workflow actions.

-*- coding: utf-8 -*-
"""Example django admin."""

from django_transitions.admin import WorkflowAdminMixin
from django.contrib import admin

from .models import Lifecycle

class LifecycleAdmin(WorkflowAdminMixin, admin.ModelAdmin):
 """
 Minimal Admin for Lifecycles Example.

 You probably want to make the workflow fields
 read only so yo can not change these values
 manually.

 readonly_fields = ['wf_state', 'wf_date']
 """

 list_display = ['wf_date', 'wf_state']
 list_filter = ['wf_state']

admin.site.register(Lifecycle, LifecycleAdmin)

Mixins and Base Classes

Transition Base Classes

Mixins for transition workflows.

StatusBase

	
class django_transitions.workflow.StatusBase

	Base class for transitions and status definitions.

	
classmethod get_kwargs()

	Get the kwargs to initialize the state machine.

StateMachineMixinBase

	
class django_transitions.workflow.StateMachineMixinBase

	Base class for state machine mixins.

Class attributes:

	status_class must provide TRANSITION_LABELS property
and the get_kwargs class method (see StatusBase).

	machine is a transition machine e.g:

machine = Machine(
 model=None,
 finalize_event='wf_finalize',
 auto_transitions=False,
 **status_class.get_kwargs() # noqa: C815
)

The transition events of the machine will be added as methods to
the mixin.

	
get_available_events()

	Get available workflow transition events for the current state.

	Returns a dictionary:

	
	transition: transition event.

	label: human readable label for the event

	cssclass: css class that will be applied to the button

	
get_wf_graph()

	Get the graph for this machine.

Django Admin Mixins

Mixins for the django admin.

	
class django_transitions.admin.WorkflowAdminMixin

	A mixin to provide workflow transition actions.

It will create an admin log entry.

	
response_change(request, obj)

	Add actions for the workflow events.

Templates

To use the templates you have to include 'django_transitions' in
INSTALLED_APPS in the projects settings.py file:

INSTALLED_APPS = [
 'django.contrib.admin',
 ...
 'django_transitions', # this is only needed to find the templates.
]

The change_form template adds workflow buttons to the admin change form,
and also provides the ‘save’ and ‘delete’ buttons.
This template can be applied to the django admin class:

change_form_template = 'transitions/change_form.html'

{% extends 'admin/change_form.html' %}

{% block submit_buttons_bottom %}

 <!-- add the save and delete buttons -->
 {{ block.super }}

 <!-- Add buttons for available transitions -->
 <div class="submit-row">
 {% for event in original.get_available_events %}
 <input type="submit" class="{{ event.cssclass }}" value="{{ event.label }}" name="_{{ event.transition.name }}">
 {% endfor %}
 </div>

{% endblock %}

The read_only_change_form template adds workflow buttons to the admin change form,
and removes the ‘save’ and ‘delete’ buttons.
This template can be applied to the django admin class:

change_form_template = 'transitions/read_only_change_form.html'

{% extends 'admin/change_form.html' %}

{% block submit_buttons_bottom %}

 <div class="submit-row">
 {% for event in original.get_available_events %}
 <input type="submit" class="{{ event.cssclass }}" value="{{ event.label }}" name="_{{ event.transition.name }}">
 {% endfor %}
 </div>

{% endblock %}

Frequently asked questions

What are the advantages of django-transitions over other django workflow applications?

Personally I like to have all the information about my workflow
in one place.

Are there other packages that provide this functionality?

The packages I know of are (in no specific order):

	django-fsm [https://github.com/viewflow/django-fsm]

	viewflow [http://viewflow.io/]

	ActivFlow [https://github.com/faxad/ActivFlow]

	Django-XWorkflows [https://github.com/rbarrois/django_xworkflows]

	Django River [https://github.com/javrasya/django-river/]

You should evaluate if one of the above packages are a better match
for your needs.

What is the history of django and pytransitions integration?

The code from this package was lifted from the discussion in django and transitions [https://github.com/pytransitions/transitions/issues/146]

Changelog

0.2 (2019/01/17)

	Add optional css class to TRANSITION_LABELS

0.1 (2018/11/13)

	Initial release

Contributors

	Shuai Wang (jxskiss)

	Alexander Neumann (aleneum)

	Artem Malyshev (proofit404)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django_transitions	

 	
 	
 django_transitions.admin	

 	
 	
 django_transitions.workflow	

Index

 D
 | G
 | R
 | S
 | W

D

 	
 	django_transitions.admin (module)

 	
 	django_transitions.workflow (module)

G

 	
 	get_available_events() (django_transitions.workflow.StateMachineMixinBase method)

 	
 	get_kwargs() (django_transitions.workflow.StatusBase class method)

 	get_wf_graph() (django_transitions.workflow.StateMachineMixinBase method)

R

 	
 	response_change() (django_transitions.admin.WorkflowAdminMixin method)

S

 	
 	StateMachineMixinBase (class in django_transitions.workflow)

 	
 	StatusBase (class in django_transitions.workflow)

W

 	
 	WorkflowAdminMixin (class in django_transitions.admin)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-transitions’s documentation!

 		
 Overview

 		
 Quickstart

 		
 States and Transitions

 		
 Statemachine Mixin

 		
 Model

 		
 Admin

 		
 Mixins and Base Classes

 		
 Transition Base Classes

 		
 StatusBase

 		
 StateMachineMixinBase

 		
 Django Admin Mixins

 		
 Templates

 		
 Frequently asked questions

 		
 What are the advantages of django-transitions over other django workflow applications?

 		
 Are there other packages that provide this functionality?

 		
 What is the history of django and pytransitions integration?

 		
 Changelog

 		
 0.2 (2019/01/17)

 		
 0.1 (2018/11/13)

 		
 Contributors

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

